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High temperature creep of lithium zinc 
silicate glass-ceramics 
Part 2 Compression creep and recovery 

R. MORRELL* ,  K. H. G. ASHBEE 
H. H. Wills Physics Laboratory, University of Bristol, UK 

The creep and recovery behaviour in compression of two lithium zinc silicate glass- 
ceramics is established over the temperature range 590 to 750~ at stresses up to 91.4 
MN m-2. It is shown that the transient creep obtained is linearly viscoelastic and obeys the 
Boltzmann superposition principle. The activation energy of the rate-controlling process is 
the same as that found for secondary creep and is due to viscous flow of the residual glass 
phase. A simple method of analysis of the strain-time curves is presented, which can be 
modified to apply to stress relaxation tests, 

1. Introduction 
In Part 1 of this series [1], the general creep 
behaviour of two lithium zinc silicate glass- 
ceramics has been reported. These materials are 
of similar composition and contain the same 
phases in approximately the same proportions. 
They contain about 80 ~ crystalline material, the 
remainder being a glassy phase which is fairly- 
fluid at the creep test temperatures 600 to 800 ~ C. 
One possesses a fairly homogeneous distribution 
of crystals of average size I tam and the other 
contains large petal-shaped clusters about 20 gm 
across of the major phase, lithium disilicate, 
interspersed with crystals of other phases about 
1 to 2 gm across. 

Analysis of the secondary creep data obtained 
from these materials shows that deformation is 
rate-controlled by viscous flow of the residual 
glass phase, and that while crystal deformation 
cannot be excluded as contributing to the 
plasticity, it is likely to be insignificant compared 
to flow of the glass. It was found, however, that 
the creep rate in general is not directly propor- 
tional to stress but to a power of stress as high as 
6. It was demonstrated that this is a result of void 
formation within the glass phase during second- 
ary creep leading to a low strain failure in both 
tension and compression. 

Preceding the steady secondary creep is a 
region of primary creep. Analysis of this creep 
and of the corresponding transients on unloading 

a specimen yields useful information regarding 
the deformation processes occurring within the 
materials. Having established their secondary 
creep behaviour, some creep and recovery experi- 
ments were performed on both glass-ceramics. 
The present paper reports the results obtained 
and the conclusions drawn from the analysis. 
Since the strains involved were fairly small (e.g. 
about 0.1% for a stress change of 10 MN m -2 in 
compression) the creep and recovery tests were 
made in compression where fairly high stresses 
could be used to facilitate accurate analysis of 
the strain-time curves. 

When the stress, o-, applied to a creep speci- 
men is changed by an amount ~z Ao-, the strain 
measuring system first records an elastic strain 
change, followed by plastic straining at a rate 
that changes with time until a creep rate is 
obtained that is characteristic of  the new stress 
condition. The strain accommodated during the 
transient creep can be of two main types: 
1. A delayed elastic strain which is completely 
recoverable on removal of the stress increment 
and which is produced simultaneously with an 
unrecoverable plastic strain, as for example in a 
glass. 
2. A transient plastic strain, the strain-rate 
decreasing as the material work-hardens. The 
strain produced is only partly recoverable by 
relaxation of the internal stresses set up, as for 
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example in most dislocation deformation pro- 
cesses. 

The behaviour of the first type has been 
investigated theoretically for a dilute dispersion 
of elastic spheres in a viscous medium [2] and it 
has been shown that after allowing for the non- 
recoverable viscous deformation, the delayed 
elastic strain built up during stressing is com- 
pletely recoverable on removal of the stress. The 
general form of the equations was verified by 
Dunning and Patterson [3] for latex spheres in 
bitumen (viscosity 1 GNsm -~ at room tempera- 
ture). Transient creep of the second type is 
complex and incomplete owing to changes in 
microstructure with strain, and its analysis 
depends on the recovery mechanisms that can 
o c c u r .  

2. Experimental procedure and 
preliminary results 

The materials and creep machines used in this 
study were the same as those reported in Part 1 
[1 ]. The glass-ceramics were tested between 590 
and 750~ at stresses of 26, 48.8 and 91.4 
MN m -~ by allowing the temperature to stabilize 
and then applying the required load. When a 
steady creep rate had been attained, the specimen 
was unloaded to effectively zero stress and 
allowed to recover until no significant change of 
strain with time could be measured. Repeated 
loading was always performed after complete 
recovery of the previous cycle, so that each cycle 
was not influenced by the previous one. In the 

main analysis the first cycle is neglected to allow 
for the settlement of the specimen onto the push 
rods and its alignment under load, and for any 
initial compaction of the crystalline material 
from the original as-crystallized condition. (These 
effects are not experimentally separable.) Load 
cycles were repeated at different loads and 
temperatures until the accumulated unrecovered 
strain exceeded about 1% for tests at 91.4 MN 
m -z or about 5 % for the lower stresses, so that 
variations in the strain cycle due to the onset of 
failure or to significant changes in cross- 
section were avoided. 

Fig. 1 illustrates schematically a typical creep 
and recovery cycle and the terms used to express 
the various strains produced. The instantaneous 
elastic strain Ee is the sum of the elastic deform- 
ations of the specimen and the testing machine, 
the latter contributing the greater proportion. 
Thus, the recorded strains OA and BC were equal 
in all loading cycles at the same stress (except the 
first one as mentioned above) to within the 
experimental error incurred as a result of the 
difficulty of defining points A and C accurately. 
This arose from the difficulty in distinguishing 
visually between the elastic and very rapid initial 
creep deformation of the specimen as recorded 
by the transducer strain measuring system. To 
within this error, the following relationships were 
established from a number of repeated loading 
cycles at different stresses and temperatures for 
both glass-ceramics. 
1. Providing that both creep and recovery are 
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Figure 1 A creep and  recovery cycle and  the  nomenc la tu re  used  to describe the  var ious  s t ra ins  involved. 
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Figure 2 Recovery  curve for g lass-ceramic (i) after creep at 48.8 M N  m -2 at  640~ 
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allowed to go to effective completion, repeated 
loading cycles at the same stress and of  the same 
duration produce strain cycles of the same shape. 
2. The recovery process does not possess a single 
characteristic recovery time, since a plot of log 
(recovery strain) versus time does not yield a 
straight line (Fig. 2). 
3. The unrecovered plastic strain Eu is equal to 
the final secondary creep rate multiplied by the 
time under load i.e., in Fig. 1, 

eu = i s . t  1 .  (1)  

4. Providing distinct secondary creep is attained, 
the shape of the recovery curve is the same as 
that of the primary creep curve after subtraction 
of  the secondary creep (Fig. 3), 

i.e. e(t) - ee - is .  t during creep 

= er + e u -  e ( t -  t0 during recovery. (2) 

Consequently, after time tl 

e 0 - is .  tl = Er (3) 

or the primary creep is completely recovered. 
During the first cycle the shapes of the creep and 
recovery cycles are approximately the same, and 
Equation 2 is generally obeyed, illustrating that 
the effects during the first loading described 
above occur in the very early stages of  deform- 
ation. 
5. The transient primary creep strain, ep - is t~, 
is proportional to the applied stress in loading 
(Fig. 4) but is effectively independent of  tempera- 
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Figure 3 The  equivalence o f  p r imary  and  recovery creep s t ra in  func t ions  at  91.4 M N  rn -~, 6500C, for  glass-ceramic 
(ii). The recovery curve is plotted on a (t - tl) scale. 

1273 



R. M O R R E L L ,  K . H . G ,  A S H B E E  

0.8 

.~ 0+6 

o-4 

0 

n," 0,2 

0 t00 

T J  o glass-ceramic (i} / ~  
glass-ceramic (ii} ~ •  

, I . . . . . . . . . . . . . . . .  I t . . . . . . . .  

2 0  4 0  6 0  8 0  
Compressive Stress (MN m -2) 

Figure 4 The recoverable strain as a function of stress within the temperature range 590 to 670~ 

ture over the range in which the stress could be 
employed. The slope of the plot gives character- 
istic moduli of 1.1 ~ 0.1 x 101~ N m -z for both 
glass-ceramics. 
6. Repeated stressing and recovery does not 
alter either the secondary strain-rate achieved 
during stressing from that obtained at constant 
stress, or the accumulated strain to failure. 

From these results it is concluded that a linear 
viscoelastic process may control the transient 
creep of the glass-ceramics. If  this is the case, 
then the glass-ceramics can be considered as 
loosely connected glass-crystal aggregates 
mechanically clamped by the viscous glass, the 
same type of structure as deduced from the 
secondary creep characteristics. To verify that 
the glass-ceramics are viscoelastic, some tests 
were made that were designed to establish 
whether or not the transient deformations obey 
the Boltzmann superposition principle, i.e. 
whether removal of an applied stress o- is 
equivalent in its effects to applying an additional 
stress ( -  or) at the same time. 

3. Verification of the superposition 
principle 

The simplest viscoelastic model for creep and 
recovery consists of a spring and dashpot in 
parallel with respect to the applied stress, known 
as a Voigt element, representing shear deforma- 
tion. Under stepwise loading from shear stress 
r = 0 to r = r 0 at time t = 0, the shear strain 

7 ( 0 =  ~ 1 - - e x p  -- ~-]j (4) 

I274 

where k is the spring constant and ~/ is the 
dashpot viscosity. Thus, a plot of ln{y(m ) - 
7(0} against t should yield a straight line. 
However, as illustrated by Fig. 2, the glass- 
ceramics in common with the majority of 
materials cannot be represented by this simple 
model. A spectrum of retardation times, 
h = ~?+/k~ are required. Equation 4 becomes 

Y( t )=  ~ ' Y ~ ( t ) ~ r ~  ~ k~ 

-~o](t) (5) 
where J(t) is known as the shear creep compli- 
ance. For the case of uniaxial extension, the 
uniaxial compliance measured, D(t), is simply 
related [4] to the bulk compliance B(t) and to 
J(t) by 

D(t) = �89 J(t) + ~ B(t).  (6) 

Since Y(t) and B(t) will be of similar form, and 
B(t) is fairly small compared to J(t) for relatively 
incompressible materials, Equation 5 can be 
redefined for the uniaxial case: 

~(t) = % D(t) (7) 

for stepwise loading at t --- 0. If a viscous or 
plastic process is occurring in addition to the 
viscoelastic one, Equation 7 becomes 

e(t) = % D(t) + 4 .  t .  (8) 

For creep and recovery cycles, removal of the 
applied load at t = t 1 is equivalent by the 
Boltzman superposition principle to applying an 
additional load ( -  %). Thus, 
during creep 
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Figure 5 Verification of the superposition principle for glass-ceramic (i)at 680~ 48.8 MN m -2. 

o n  

e(t)  = eo D ( t )  + gs . t , 0 < t < q ,  (9a) 

during recovery 

E(t) = cr o D ( t )  -- a o D ( t  -- tz) + is .  t l ,  t >  h 
(9b) 

The measured viscoelastic compliances in creep 
and recovery are only images of each other if 
loading has been for long periods, such that 
D ( t )  - ~  D(oo ) .  At shorter times the two measured 
compliances are related as above but are not 
equivalent. 

In order to test the superposition principle 
simply by experiment, G(t  - q )  was defined as 
being the measured recovery compliance with 
values of 0 at t - t~ and D ( h )  at t -~ o% so that 
during recovery 

e( t )  = (% D(tx)  - a o G( t  - t l)  -k ~s tl  , 
t > tl (10) 

with only one time-dependent term. Equation 10 
is then exactly equivalent to Equation 9b, whence 

a ( t  - tl) + [D(t) - D(tl) ] = D ( t  - t l ) .  (11) 

Thus, if the measured recovery compliance 
G ( t -  tO is corrected by the additional extra- 
polated value of D ( t ) ,  = D ( t ) -  D ( f i )  that 
would have occurred had unloading not taken 
place, then the creep compliance D ( t -  q )  
should result if the superposition principle is 
obeyed by the glass-ceramics. 

Experimentally, the full creep compliance 
D ( t )  was ascertained over long times, until 
distinct secondary creep was displayed. After 

complete recovery, this was followed by loading 
cycles of shorter duration. Subsequent analysis 
of the data (Fig. 5) shows that the measured 
recovery compliance, corrected as above and 
plotted on a log (t - tl) scale is coincident with 
the original creep compliance D ( t )  plotted on a 
log t scale to within experimental error. It is thus 
demonstrated that both glass-ceramics obey the 
superposition principle, and can be classified as 
viscoelastic materials. Further, Fig. 4 demon- 
strates that the behaviour is also linear with stress. 
It is concluded, therefore, that during transient 
creep, the viscous glass delays the build-up of 
elastic strain in the crystalline material, the 
process being rate-controlled by the glass phase. 
By performing tests at a variety of temperatures 
it is possible to calculate the viscous activation 
energy of the glass phase and to provide a check 
on the value calculated from the secondary creep 
of about 600 kJ real -1. 

4. Temperature dependence of the 
viscoelastic process 

The activation energy of the primary creep 
process can be measured from the primary creep 
data by the following method. Since the primary 
creep has been shown to be a linear viscoelastic 
process, the secondary strain-rate gs can be 
subtracted from the actual strain-rate d(t) to yield 
the viscoelastic strain-rate r The activation 
energy attributable to the viscoelastic process is 
then: 

( 91nCv~ 
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Figure 6 Arrhenius plots of(a) rate of change of normalized creep compliance (/)) at D = 0.5 (z5) and 0.75 (0) and 
tb) time to attain D = 0.5 (~) and 0.75 (0). 

evaluated at constant structure, or strain ev. 
Since ~v = ao D(t, T) 

{D In D(t, T)'~ 
Ev = - • ~ ( 1 ~ )  /D=D1 (12) 

Equation 12 is used to calculate Ev from the 
slope ofaplot  of {In/) }D =e, versus 1/T (Fig. 6a). 
For the purposes of the plot, the creep compli- 
ance D(t) is normalized by putting D(o~) = 1. 
The rates of change of the normalized creep 
compliances at normalized values of 0.5 and 
0.75 are plotted against reciprocal temperature 
for tests where the temperature was changed 
between completed loading cycles, 

The slopes of the least squares fitted lines to 
the data give an average activation energy 600 • 
50 kJ mo1-1 for both glass-ceramics. This figure 
is in good agreement with that derived for 
secondary creep data in the previous paper, and 
confirms that the glassy phase in the glass- 
ceramics is the rate-controlling medium in the 
deformation. 

Another simple and experimentally more 
accurate method of determining the activation 
energy is as follows. Referring to Equation 4, the 

t 276 

summation can be rewritten as an integral with 
respect to k, providing the dashpot viscosity is 
the same for all dashpots (i.e. assuming the glass 
phase is of uniform composition); 

D(t, T) = --k-- 1 - exp dk (13) 

where M(k) is a function describing the spectrum 
of spring constants k. Since the spring constants, 
equivalent to the shear elastic moduli of the solid 
and fluid phases, are effectively independent of 
temperature compared to the dashpot viscosity 
~/, and the structures of the glass-ceramics are 
constant within the test range, the only tempera- 
ture dependent term in Equation 13 is kt/~7. 

For a given value of the viscoelastic compli- 
ance D(t, T) = Da, this term must be a constant 
for varying temperature 

(kt/~l)/ D 1 = constant.  

Therefore, the viscosity of the dashpot fluid and 
the time to attain a value of D = D 1 must vary 
in the same way with temperature. Thus, by 
plotting {In t)D=D~ v e r s u s  1/RT, (Fig. 6b) the 
activation energy of the dashpot fluid can be 
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calculated. For  both glass-ceramics this yields a 
value of 590 • 30 kJ mo1-1, a figure similar to 
that obtained by the former method. However, 
this latter method presupposes that the dashpot 
fluid is the only temperature variant feature and 
that it represents the residual glass phase in the 
glass-ceramics. The former method is completely 
non-specific and presupposes only a viscoelastic 
material. 

5. Discussion 
The analysis of the transient creep produced 
during cyclic loading in compression shows that 
the deformation process is viscoelastic and linear 
with stress, and that it is rate-controlled by the 
viscous glass phase. Since the two methods of 
calculating the activation energy of the creep 
mechanisms produce values which are the same 
to within experimental error as those calculated 
from the secondary creep data analysed in 
Part 1 [1 ], it confirms that the secondary creep 
is also rate-controlled by the glass phase. Thus, 
it is concluded that at all stages of creep of these 
particular glass-ceramic materials, the deforma- 
ation behaviour is controlled by the residual 
glass phase, and that crystalline deformation of 
any type is insignificant. The viscoelastic and 
secondary creep processes are independent of 
each other however, since the secondary creep 
rate is not affected by cyclic stressing and the 
viscoelastic process is not affected by the total 
plastic strain accumulated. 

It was noted earlier in Section 2 that the strain 
to the onset of tertiary creep in samples sub- 
jected to repeated creep and recovery cycles was 
approximately the same as that produced in 
ordinary creep tests at constant load. This would 
appear to be a consequence of the behaviour of 
the voids produced within the glassy phase [1 ] 
in the early stages of creep. Although the local 
strains involved in the production of a void under 
negative pressure are large, the overall strain in 
the specimen is small. Since the overall recovery 
strain could be as high as 0 .8~ ,  many voids 
would tend to close up during recovery providing 
the driving forces of surface tension and elastic 
strain in the crystalline material are strong 
enough to do this. However, such a process 
would be completely reversible, and on reloading, 
voids would be nucleated again at the same sites 
and would grow as before until failure resulted, 
very probably in the same configuration as would 
have occurred in the same specimen under a 
static stress. 

The viscoelastic behaviour discussed in this 
paper should have a wider applicability to the 
transient creep of all glass-bonded ceramic 
materials, except those in which there is a rigid 
crystal network. For  example, Clews et al [5] 
showed that the torsional creep of porcelain is 
essentially composed of a steady creep rate and a 
recoverable transient. Although the data was not 
analysed as in this paper the recoverable part 
was found to be linear with stress, suggesting that 
porcelain also is linearly viscoelastic. 

Further, this method of analysis can also be 
applied to tests at constant specimen extension 
where the load is allowed to relax, by defining a 
time dependent viscoelastic modulus. 

6. Conclusions 
The analysis of the strain produced in compres- 
sion during creep and recovery cycles on two 
similar lithium zinc silicate glass-ceramics 
containing about 20 ~ residual glass phase shows 
that the materials exhibit linear viscoelasticity, 
since they obey the Boltzmann superposition 
principle. By performing the cycles over a range 
of temperature, the activation energy of the rate- 
controlling process was determined from the 
viscoelastic creep compliance and was shown to 
be the same as that calculated from the second- 
ary creep data [1 ]. Thus, all stages of the deform- 
ation of these glass-ceramics are controlled by 
the glass phase. Similar viscoelastic behaviour 
should also occur in most glass-bonded ceramic 
materials.' 
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